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Preface

This report documents the theory behind the CSM Testbed structural finite element pro-

cessor ES1 for basic SRI and ANS shell elements. The CSM Testbed is described in

reference 1.

This report is intended both for CSM Testbed users, who would like theoretical background

on element types before selecting them for an analysis, as well as for element researchers

who are attempting to improve existing elements or to develop entirely new formulations.

iii

PRECEDING PAGE BLANK NOT FILMED



iv



Contents

List of Figures .............................. v±

List of Tables ........................... vii

Section 1 - GENERAL DESCRIPTION ................. 1
11.1 Purpose ..........................
1

1.2 Background .........................
11.3 Specific Element Types ....................

Section 2 - ELEMENT FORMULATION ................ 18

............. 182.1 Summary ............
......... 182.2 Variational Basis .............

2.3 Discrete Equations ...................... 23
......... 252.4 Element Topology .............

2.5 Geometric Approximations .................. 28

2.6 Displacement Approximations ................. 30

2.7 Strain Approximations (SRI) .................. 32

2.8 Strain Approximations (ANS) ................. 36

2.9 Stress Approximations .................... 50
........... 502.10 Force Vectors ............

......... 512.11 Stiffness Matrices .............
........... 542.12 Mass Matrices ............

2.13 Element Nonlinearity .................... 56

Section 3 - REFERENCES ......... 58
°.oo=°.°....'"

v

PRECEDING PAGE BLANK NOT FILMED



List of Figures

Figure 1. Shell Geometry Used in Formulation of ES1 Elements ..... 20

Figure 2. Topology of ES1 Shell Elements ............... 27

Figure 3. ANS Shell Element Strain Sampling Points .......... 38

v±



List of Tables

Table 1.

Table 2a.

Table 2b.

Table 2c.

Table 2d.

Table 2e.

Table 2f.

Table 2g.

Table 2h.

Table 2i.

Table 2j.

Table 2k.

Table 21.

Table 2m.

Table 2n.

Table 3.

Table 4.

Table 5.

Summary of Processor ES1 Element Types .......... 3

Element ES1/EX41 Fact Sheet ................ 4

Element ES1/EX42 Fact Sheet ................ 5

Element ES1/EX43 Fact Sheet ................ 6

Element ES1/EX44 Fact Sheet ................ 7

Element ES1/EX45 Fact Sheet ................ 8

Element ES1/EX46 Fact Sheet ................ 9

Element ES1/EX47 Fact Sheet ................ 10

Element ES1/EX91 Fact Sheet ................ 11

Element ES1/EX92 Fact Sheet ................ 12

Element ES1/EX93 Fact Sheet ................ 13

Element ES1/EX94 Fact Sheet ................ 14

Element ES1/EX95 Fact Sheet ................ 15

Element ES1/EX96 Fact Sheet ................ 16

Element ES1/EX97 Fact Sheet ................ 17

Basic IsoP Data for 4-Node Elements ............. 29

Basic IsoP Data for 9-Node Elements ............. 30

Special SRI Element Interpolation Data ............ 34

vil



Table 6. Strain Variation within 4-Node SRI Elements ......... 35

Table 7. Strain Variation within 9-Node SRI Elements ......... 35

Table 8. Serendipity (8-Node) Element Shape Functions ......... 36

Table 9. ANS Element Strain Interpolation Data ............ 40

Table 10. Strain Variation within ANS Elements ............. 49

viii



Structural Element Processor ES1

1. GENERAL DESCRIPTION

1.1 Purpose

Processor ES1 contains various displacement-based selective-reduced integrated (SRI) and

assumed natural-coordinate strain (ANS) transverse-shear deformable (C °) shell elements,

including 4-node (bilinear) and 9-node (biquadratic) quadrilateral element geometries.

These elements are intended for modeling very thin to moderately thick shells. Both SRI

and ANS element formulations are designed to alleviate common shell-element pathologies

such as Iocking, spurious mechanisms, and mesh-distortion sensitivity. However, the de-

gree to which this is achieved varies significantly with the specific element type, and can

even be problem dependent (see Element Selection Guidelines (Section 5.2.7) in reference

1).

All elements within processor ES1 are quadrilateral shell elements with 3 translational and

3 rotational freedoms per node. However, as they do not have "drilling" stiffnesses, one of

the rotational freedoms may have to be suppressed at each node - if it aligns too closely

with a computational basis vector at that node.

Arbitrarily large rotations (but only small strains) may be modeled with these elements

by employing the standard corotational utility available for all ES processors.

1.2 Background

Processor ES1 was developed by G.M. Stanley of the Lockheed Palo Alto Research Labo-

ratory. The elements implemented in ES1 have been developed over the course of about

5 years (1982-1986), through a combination of Lockheed Independent Research funds and

support from the NASA CSM Program. In particular, the SRI elements are an offshoot of

collaborative research performed by the author and Professor T.J.R. Hughes of Stanford

University (see reference 2), and the ANS elements were developed about the same time

in collaboration with Professor K.C. Park of the University of Colorado at Boulder (see

reference 3). While the ANS elements are still evolving, the 9-node version is presently

considered to be the most robust shell element implemented in processor ES1. (Note:

Updated versions of the ANS elements are under development in CSM Testbed processor

ES7 (reference 4).)

1.3 Specific Element Types

There are 14 different shell element types that may be selected within processor ESI:

seven 4-node quadrilateral elements and seven 9-node quadrilateral elements. Only two

of these element types (EX47 and EX97) are based on the ANS formulation; the rest

are based on the SRI formulation. Only the EX97 element is recommended for general-

purpose applications; the rest are included for research purposes, or for potential future



improvement (for example, the uniformly reducedintegrated elementsare rank deficient

but may later be augmented with rank stabilization). A summary of the 14 element types

is given in Table 1. Individual Element Fact Sheets for each of these elements are provided

in Tables 2a-2n. Specific guidelines for element type selection are given in Section 5.2.7 of

reference 1.

In Tables 2a-2n the following definitions apply:

NEN - number of element nodes

NIP - number of integration points

NSTR - number of stresses

NDOF - number of nodal degrees of freedom

2



Type

EX41

EX42

EX43

EX44

EX45

EX46

EX47

EXgl

EX92

EX93

EX94

EX95

EX96

EX97

Table 1. Summary of Processor ES1 Element Types

Description

4-node uniformly reduced (1-point) integrated (URI) element; standard

isoparametric Lagrange (bilinear) displacement interpolation.

4-node selectively reduced integrated (SRI) element; reduced integration

is used (effectively) on both membrane and transverse-shear strain con-
tributions to the material stiffness and internal force - and on the entire

geometric stiffness. All other strains are treated with standard isopara-
metric Lagrange interpolation. All strains are stored at the normal (2×2

Gauss) integration points.

Similar to EX42, but directionally reduced integration is used on

transverse-shear strain components. (Note: This element is not recom-

mended for non-rectangular element geometries.)

Same as EX42 except in-plane shear components are fully integrated.

Same as EX43 except geometric stiffness is fully integrated.

Same as EX42 except geometric stiffness is fully integrated.

4-node assumed natural-coordinate strain (ANS) element. (Note: This is

the recommended 4-node element for general-purpose use.)

9-node uniformly reduced (2×2) integrated (URI) element; standard

isoparametric Lagrange (biquadratic) displacement interpolation.

8-node uniformly reduced (2×2) integrated (URI) element; standard

isoparametric Serendipity displacement. (Note: Defined as a 9-node el-
ement; the center node freedoms should be suppressed later - either man-

ually, or automatically using the generic FORM FREEDOMS command.)

9-node selectively reduced integrated (SRI) element; with Heterosis dis-

placement interpolation: 9-nodes for rotations and 8-nodes (Serendipity)
for translations. Reduced integration (effectively) is used on all membrane
and transverse-shear strains, and on the geometric stiffness. All strain

components are stored at normal (3×3) integration points. (Note: Center
node translational freedoms should be suppressed later - either manually,

or automatically using the generic FORM FREEDOMS command.)

Same as EX93 except full (3 × 3) integration is used on the geometric stiff-

ness.

Same as EX93 except selectively reduced (2×2) integration is used on the

membrane derivatives appearing in the geometric stiffness.

Same as EX93 except reduced integration is only used on transverse-shear

strains.

9-node assumed natural-coordinate strain (ANS) element. (Note: This is

the recommended 9-node element for general-purpose use.)



Attribute

Element Type

Developer

Topology

NEN=4

NIP=I

NSTR--8

NDOF=6

Table 2a. Element ES1/EX41 Fact Sheet

Desc_ption

4-Node Lagrange Shell Element with Uniformly Reduced Integration

G. M. Stanley (Lockheed Pa]o Alto Research Laboratory)

4

d:=
L0:j

(a=l,4)

Force Vectors f__'_'= 4J(0,0)BT(0,0)@L(0,0)

gffit = 4J(0,0)NT(0,0)_'ffit(0,0)

Stiffness Matrices K_ "tz = 4J(0,0)BT(0,0)CL(0,0)BL(0,0)

K_ e°=' = 4J(O,O)G_T(o,o)sL(o,O)G_(O,O)

Mass Matrices M_" = 4J(0,0)NT(0,0)_NT(0,0)

M D = diag((m_I3,_lI3),...,(m,_I3,_413)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Seriously rank deficient (spurious modes)

Recommended Use Research only
i

z_,(_,_), _(_,_), _._(_,_)

_(_,_), _(_._), z_(_,_)

z._,(_,_), _(_,_) ~

~ p0(_,v)= coast.

~ p0(_,_)= coast

p0(_,_)= coast

Using constitutive relations, e.g.,

_L(_,_) = _L(_,_)_,,(_,_)

Stress Approximation

_L = {nL,mL,qL} T

Strain Approximation

_L : {'_L, _L, _IL} T

Intended Use Very thin to moderately thickshells(thicknesspre-integrated)

Variational Basis Assumed displacement/strainhybrid

Geometric Approx. Billnearreferencesurface;normal edges

Displacement Approx. Bilineartranslationsand rotations



Attribute

Table 2b. Element ES1/EX42 Fact Sheet

Description

Element Type 4-Node Lagrange Shell Elt. with Sel. Reduced Integration (SRI)

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN=4

NIP=4

NSTR--8

NDOF=6

n
4 ,d

(a = 1,4)

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx. Bilinear translations and rotations

_zL, _zr.Strain Approximation

_L = {'_L, _L,_L} T

Stress Approximation

_L = {nL, mL,qL} T

p0(_)pl(?7 ) "_yr,,gy L ,-w pl(_)p0(T])

~

p0ff)p,( ) + p, ff)p0( )

Using constitutive relations, e.g.,

OrL(_,_) = CL(_,?7)_L(_,77)

--T

Force Vectors fin, = Eg=z4 wg J(_9,_g)BL(_g,_9)_L(_g,?Tg)

---- Eg=lWe ND(_g,_g)f ((g,r/a)
--T

Stiffness Matrices g_ "_l = _g=14 wg J(_g,Tlg)BL(_g,?Tg)CL(_g,?Tg)BL(_g,?Tg)

K_Om 4 _---iT= _g--z wgJ(_g'?]g)GL (_g'_g)SL(_g_g)G4L(_g'_g)

= , T/g) ND((g, T/g) E D((g, r/g)Mass Matrices UC E_=I Wg J(_g T N T

M_ : diag{(m,

Nonlinearity Midpoint strain and/or corotation

Pathologies Distortion sensitive; spurious modes

Recommended Use Research only

5



Table 2c. Element ES1/EX43 Fact Sheet

Attribute

Element Type

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN=4

NIP--4

NSTR=8

NDOF=6

Description

4-Node Lagrange Shell Elf. with Sel. Reduced Integration (SRI)

q
4 .4

2 "0_

(a= 1,4)

= ND((g, _Tg)Z NTD(_g, ?Tg)Mass Matrices M C E4=] wgj((g,_g ) T

Me° = diag{(_lI,,alI3),...,(_,I3,a, Z3)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Very distortion sensitive

Research onlyRecommended Use

Stiffness Matrices

Force Vectors

r._,_ ~ p0(_)v,(_) r_,_ _ w(_)p0(_)

~ p0(_,_) 7_ ~ p0ff)p_(_) 7_ ~ p_ff)p0(_)

I_zLyL ~ po(_)Pl(77)AvPl(_)P0(_)

Using constitutive relations, e.g.,

_n(_,_) = Cnff,_)_n(_,_)
--T

,t j(_g,Tlg)BL(_g,Ug)_.L(_g,Ug )= Eg=l Wg

4 T _ezt
- ND(_g- Eg=_ WgJ(_g,77g) ,_/9)f (_g,T/g)

Kmatt

Kgeom
e

- --T-- _g)BL (_g, _g) C L(_g, _g) gL (_g, _/g)

_--=4T

,1 j(_g, _Tg)G L (_g,_g)SL(_g,_g)_'iL(_g,_Tg)= Eg=I Wg

6

Stress Approximation

O'L = {nL, mL, qL} T

Strain Approximation

_L : {'_L, _L,_L} T _zLy_

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx. Bilinear translations and rotations



Attribute

Table 2d. Element ES1/EX44 Fact Sheet

Element Type

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN:4

NIP=4

NSTR=8

NDOF=6

Description

4-Node Lagrange Shell Elt. with Sel. Reduced Integration (SRI)

n
4 4

2 "0_

(a= 1,4)

Mass Matrices M_ = E_--1 wgJ(_g,'79)NT(_g,'Tg)2"NT(_g,'7g)

M_ = diag{(mli3,_li3),...,(m413,_413)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Very distortion sensitive

Recommended Use Research only

7

Stiffness Matrices

Force Vectors

Stress Approximation

_L : {nL, mL, qL} T

_L,_ ~ p0(_)pl(n) _L,_,_ ~ p_(_)p0(_)

e"zLyz, ,ICzLyz, ~ P0(_)Pl(_) -1- Pl(_)P0(_)

7_,7_L _ p0(_,7/) = const.

Using constitutive relations, e.g.,

_rL(_,_) : CL(_,_)_L(_,T])

feint :

fezt ____
-e

Kemat!

i_geom
e

E_=I wg J(_9,vlg) gT (_g,vIg)°'L(_g'zIg)

4 T _ezt
T/9) ND(_9Z:_=_J(_, ,v_)f (_ _.)

4 --T
= }2,=1_ J(_,,'7,)BL(_,'7,)_L(_,'7,)gL(_,'7,)

4 _--m-4T
= E,_-__,, J(_,,7_)GL (_,'7,)SL(_,,'7_)g'_(_,,'7,)

Strain Approximation

_L = {-_L, teL, "YL} T

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx. Bilinear translations and rotations



Table 2e. Element ES1/EX45 Fact Sheet

At tribu te Description

Element Type 4-Node Lagrange Shell Elf. with Sel. Reduced Integration (SRI)

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN=4

NIP--4

NSTR--8

NDOF--6

da=_

(a=1,4)

Force Vectors

Stiffness Matrices K_ atl 4 --T= Eg=l wgJ(_g,r]g)SL(_g,_g)CL(_g'77g)gL(_g'_g)

Kgeom 4 iT G ie = Eg=z wgJ(_g,_79)GL (_g,77g)SL(_g,_g) L(_g,_Tg)

Mass Matrices M_ 4 T= _g=z wgJ(_g,_?g)ND(_g,_?g)INT(_9,7?9)

M D = diag{(_z I3, _1 I3),..., (_413,'_413)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Very distortion sensitive

Recommended Use Research only

Stress Approximation

_L = {nL, mL, qL} T

Strain Approximation

_L ---- (_L,/_L, _/L }T _XLyL

r_,_ ~ p0(_)p,(¢) _-_,_ _ p_(_)p0(_)

~ p0(_,_) 7_ ~ p0(_)p,(¢) 7_ ~ p_(()p0(_)

Using constitutive relations, e.g.,

OrL(_,?]) = CL(_,?_)_L(_,_)

flen$ 4 --T= E_=_w_J(_,_)BL(_,_)_L(_,_)

f:zt _ 4 T, _g) ND(_9, _gE_=__ J(_ )f_=_(_,_)

8

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx. Bilinear translations and rotations



Attribute

Element Type

Table 2f. Element ES1/EX46 Fact Sheet

Description
N

4-Node Lagrange Shell Elt. with Sel. Reduced Integration (SRI)

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN=4

NIP=4

NSTR--8

NDOF=6

z

v

2 _'0x

d a=

(a--l,4)

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx. Bilinear translations and rotations

Strain Approximation

"_L : {'_L, teL, _fL} T

Stress Approximation

O'L = {nL, mL, qL} T

Force Vectors

u

ExL , _xL ~ voff)w(_) _-_,,_ ~ v_(¢)vo(,7)

_=,._,7=_,7_ ~ vo(_,,7)

,_ ~ vo(_)w(,7) + v_(_)vo(,7)

Using constitutive relations, e.g.,

_L(_,'I) = 5-'L(_,'7)'_Lff,_7)

f:nt _ 4 --T-- Eg=I WgJ(_g,_g)BL(_g'T]g)_L(_g'_Tg)

f_ee-t 4 NT -ezt= E_=_J(_,_) _(_,v_)f (_,v_)

Stiffness Matrices K_ atl = _=1 wgJ(_a,Y9)gT(_g,rlg)CL(_a,rlg)gL(_a,r/g)

Kgeom 4 iT i
e 'Vlg)GL(_9'= _g=l wgJ(_g,r/g)GL (_g,779)SL(_g "g)

T

Mass Matrices M_ = _,4=1 wa J(_a,_Ta) N_(_a,zlg)ZND(_a,_Tg)

M D = diag((_I3,_I3),...,(m, I3,_413)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Distortion sensitive; two spurious (with hourglass) modes

Recommended Use Research only

9



Table 2g. Element ES1/EX47 Fact Sheet

Attribute Description

Element Type

Developer

Topology

NEN=4

NIP=4

NSTR=8

NDOF:6

4-Node Assumed Natural-coord. Strain (ANS) shell element

G. M. Stanley (LPARL)

2 "0_

(a=l,4)

Nonlinearity

Pathologies

Recommended Use

Mass Matrices

Stiffness Matrices

_(_,_), _,(_,_), _(_,_)

_,(_,_), _(_,_), 7,(_,_)

_(*,_), _,(_,_) ~

~ po(_)p,(_)

~ p_(,)po(_)

Using constitutive relations, e.g.,

_rL(_,_) = CL(_,_)_L(_,_)

--T
fi,_t 4= _-_g=, WgJ(_g,_Tg)BL(_g,TIg)_L(_g,_Tg)

T _ez_
f..=t : _g=]4 wg J(_g,_lg)ND(_9,Tlg)f (_g,TIg)

Kmatl

Kgeom
e

4 --T
= _-_g=l WgJ(_g,_lg)BL(_g,_g)CL(_g,_g)gL(_g,TIg)

4 _--_iT
= _g=l wgJ(_g,TIg)GL (_g'_g)SL(_g'_g)-GL(_g'T]9)

Me= 4_-,g=l wg J(_g,_Tg) NT (_g,_Tg):TNT (_9,_Tg)

M D = diag((_I3,_]I_),...,(_413,_4I_)}

Midpoint strain and/or corotation

Distortion sensitive; locks for warped element geometries

Research only

10

Force Vectors

Stress Approximation

_L = {hE, mL,qL} T

Strain Approximation

"_L = (_L, t_L,_[L}T

= TeLN "_N

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Bilinear reference surface; normal edges

Displacement Approx. Bilinear translations and rotations



Attribute

Element Type

Table 2h. Element ES1/EX91 Fact Sheet

Description

9-Node Lagrange Shell Element; Uniformly Reduced Integration

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN--9

NIP:4

NSTR:8

NDOF=6

4

s w 0_ d a = ,

,v
2

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed displacement/strain hybrid

Geometric Approx. Biquadratic reference surface; normal edges

Displacement Approx. Biquadratic translations and rotations

Strain Approximation

_L -_ ('_L, ICL, _L} T

Stress Approximation

_L ----{nL,mL,qL} T

Force Vectors

_Lff,_), _(_,_), 7_(¢,_)

_,L(¢,o), _,_(_,_), _,_(_,_)

_=_,_(_,_),_=_,_(_,_) ~

~ pl(()pl(_)

~ p_(()pl(o)

p_(()p_(o)

Using constitutive relations, e.g.,

_L(_,T]) = _--_L(_,_)_L(_,_7)

feint 4 T= BL(_, V_)_L(_, _)
feeZt 4 _ezt= ND(_g,rlg)f (_g,rlg)

Stiffness Matrices K_ _tl 4-- Eg=I Wg J(_g,r]g)BT(_g,rlg)CL(_g,rlg)BL(_g,rlg)

_geom 4 iT "rlg)G L (_g,rlg SL _ ,rl )G_--e = E_--_ w_J(_, ) (_ _ (_,_)

Mass Matrices M_ E_-----1 Wg J(_g T= ,rlg)ND(_g,rlg)ZNTD(_g,TIg)

M,° = di_g{(m_I_,_I_),..., (m,I_,_,I_)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Seriously rank deficient (spurious modes)

Recommended Use Research only

11



Attribute

Table 2i. Element ES1/EX92 Fact Sheet

Description

Element Type 8-Node Serendipity Shell Element with Uniformly Reduced Integration

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology

NEN=9

NIP--4

NSTR=8

NDOF:6

4

s "_'. vy da=( 0 aj'

= 1,8)d_ -

2

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed displacement/strain hybrid

Geometric Approx. Biquadratic reference surface; normal edges

Displacement Approx. Biquadratic translations and rotations

Strain Approximation

ZL= {gL,sL,_fn}r

g._(_,,7), ,:._ff,,),-f._(_,,1)

g,_(_,,7), ,_,,.ff,,7), _,,:(_,,7)

_._,_(_,,7), _.,.y_(_,,7) ~

~ pf(_)pf(,)

pf(_)pS(T1)

pf(_)pS(_)
|

Stress Approximation Using constitutive relations, e.g.,

_L ----" {nL, mL, qL} T _rL(_, 77) = CL(_, 77)'_L(_, 77)

Force Vectors f__nt: _-_g=z' wg J(_9,_g)B_(_g,Ug)_L(_g,_]9 )

f_ezt 4 T --¢zt= _-_a=l waJ(_g'r/g)ND(_a'rlg) f (_a,r/g)

Stiffness Matrices K_ atl 4= _=_ _2(_,'_)BL_(_,'_)CL(_g,U_)BL(_,"_)
_Lgeom, 4__. = ,_)G_(_,_)

Mass Matrices M7 = _=_ _ _(_,_)Ng(_g,_)_Nv(_,_)T

M D = diag{(_zI3,_zI_),...,(_gI3,_gI_)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Rank deficient (spurious modes)

Recommended Use Research only

12



Table 2j. Element ES1/EX93 Fact Sheet

Attribute Description

Element Type 9-Node Heterosis Shell Elf. with Sel. Reduced Integration (SRI)

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

4Topology

NEN--9

NIP=9

NSTR=8

NDOF=6

8 w a
d e =

v

,, (=1,9)

2

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed displacement/strain hybrid

Geometric Approx. Biquadratic reference surface; normal edges

Displacement Approx. Biquadratic translations and rotations

Strain Approximation

_L = ('_L, _L,_fL} T

Stress Approximation

_L = {nL,mL,qL} T

EZL,e'--_Z,_ZLVL;7zL,Tvz ": pH(_)pH(zl)

tCZr " PH(_)PH(T?) t%L _ PH(_)PH(rl)

_:LVL "" PH(_)pH(rl) + pH(_)pH(_)

Using constitutive relations, e.9.,

O'L(_,_) : CL(_,_)_L(_,_)

--T
Force Vectors fient 9= _]_g=] wgJ(_g,71g)BL(_g,71g)_L(_g,Tig)

feezt 9 --ezt= ND(_g,z/g) f (_g, z/g)T
__ 9 --TStiffness Matrices K7 "tl -- Eg=l Wgd(_g,_Tg)BL(_g,TIg)_-_L(_g,77g)BL(_g'_Tg)

Kg_Om 9 --iT "= _]_g=l wgJ({g,rlg)GL (_g,rlg)SL({g,rlg)-G4L(_g,rlg)

' 9 ................N. _ .....Mass Matrices Mec = Eg=l waJ(_a,rla) D(_a,r/g)2"NTD(_g,rb)

M D = dia.q((_lI3,_I3),...,(m913,_913)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Distortion sensitive; spurious modes

Recommended Use Research only
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Table 2k. Element ES1/EX94 Fact Sheet

Attribute Description

Element Type 9-Node Heterosis Shell Elf. with Sel. Reduced Integration (SRI)

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology 4

NEN=9

NIP=9

NSTR=8

NDOF=6

2

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed displacement/strain hybrid

Geometric Approx. Biquadratic reference surface; normal edges

Displacement Approx. Biquadratic translations and rotations

Strain Approximation

"_L = {_L, _L,_fL} T

Stress Approximation

_L = {nL, mL, qL }T

Using constitutive relations, e.g.,

_rL(_,_) = CL(_,_)_L(_,_)

--T

Force Vectors f_r,, : _-,g=19 w9 j(_g,_Tg)BL(_g,?lg)_.L(_g,71g )

fez_ 9Eg:l wgJ(_g,?Tg) T -e:,

Stiffness Matrices K_ _'l 9 --T=

Kg_O,,_ _ j(_g, iT ie -- _g)GL (_g, 719)-- Eg----1 W9 _Tg)GL (_g'7]g)SL(_g '

Mass Matrices M_ = )-_=_=] wgJ(_o,,g)N_(_g,?Tg)ZNTD(_g,?Tg)

M D -- diag{(_lI3,_zi3),...,(_gI3,_gI3) }

Nonlinearity Midpoint strain and/or corotation

Pathologies Distortion sensitive; spurious modes

Recommended Use Research only
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Table 21. Element ES1/EX95 Fact Sheet

Attribute

Element Type

Description

9-Node Heterosis Shell Elf. with Sel. Reduced Integration (SRI)

Developer G.M. Stanley (Lockheed Palo Alto Research Laboratory)

Topology 4

NEN=9

NIP:9

NSTR=8

NDOF:6

2

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed displacement/strain hybrid

Geometric Approx. Biquadratic reference surface; normal edges

Displacement Approx. Biquadratic translations and rotations

Strain Approximation

_L = {_L,/_L, _)'L}T

Stress Approximation

_L = (nL,mL,qL} T

Force Vectors

Stiffness Matrices

EzL _ _yc _ ezL yL ; 7zL _7yr, _"

_ ~ p_(_)pf(v) + p_(_)p_(_)

Mass Matrices MeC = 9Eg=, wg J(_g, r/g) NT_(_g, r/g) 2" NT9 (_9, r/g)

M D = diag{(_iI_,_zI3),...,(_gI3,_zgI3)}

Nonlinearity Midpoint strain and/or corotation

Pathologies Distortion sensitive; spurious modes

Recommended Use Research only
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fint 9 _T= Eg=I _,_J(_g,,7_)BL(_,,7_)_L(_,V_)
feezt 9 _ezg= ND(_g,r/g) f (_g,%)

KTOa 9 --T: Eg=l wgJ(_g,qg)BL(_g,T}g)CL(_g,?_g)nL(_g,_g)

...iT ...i

Keg_°r" = E__-_w, J(_,_)GL (_,v_)SL(_,O_)GL(_g,_)

Using constitutive relations, e.g.,

_L(_,_) = CL(_,_)_'L(_,_)



Table 2m. Element ES1/EX96 Fact Sheet

Attribute

Element Type

Developer

Topology

Description

9-Node Heterosis Shell Elf. with Sel. Reduced Integration (SRI)

G. M. Stanley (Lockheed Palo Alto Research Laboratory)

NEN=9

NIP=9

NSTR=8

NDOF:6

Intended Use

Variational Basis

Geometric Approx.

Displacement Approx.

Strain Approximation

_L : {_L,KL,_L} T

Stress Approximation

_L : {nL,mL,qL} T

Force Vectors

Stiffness Matrices

Mass Matrices

Nonlinearity

Pathologies

Recommended Use
i

2

Very thin to moderately thick shells (thickness pre-integrated)

Assumed displacement/strain hybrid

Biquadratic reference surface; normal edges

Biquadratic translations and rotations

-_zr,t%L ,,_ pH(_)pH(71) e--_L,t%L,v pH(_)pH(¢i)

Using constitutive relations, e.g.,

_L(_,_) = CL(_,T])_L(_,_})

DT

f_ient : _g=]9 wg J(_g,rlg)BL(_g,rlg)_L(_g,Clg )

feezt 9 T _ezt
= _g=a wgJ(_g,rlg)ND(_g,71g)f (_g'Tlg)

Kmatl

Kgeom
e

Me=

M_=

9 mT
= _g=z Wg J(_g,TIg)BL(_g,Tlg)CL(_g,Tlg)BL(_g,_Tg)

9 --iT
= _.q=l wgJ(_g'Tig)GL (_g'_g)SL(_g'TIg)-_L(_g'77g)

E_=_ wgJ(_g,rlg)N_(_g,rlg)ZN_(_g,rlg)

d/ag{(maI3,,_aI3),..., (m913,fi9I3)}

Midpoint strain and/or corotation

Distortion sensitive; spurious modes

Research only
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Table 2n. Element ES1/EX97 Fact Sheet

Attribute Description

Element Type 9-Node Assumed Natural-coord. Strain (ANS) shell element

Developer G.M. Stanley (LPARL)

Topology

NEN:9

NIP:9

NSTR:8

NDOF:6

4

s_ N

2

d_= _

(a----l,9)

Intended Use Very thin to moderately thick shells (thickness pre-integrated)

Variational Basis Assumed strain/displacement hybrid

Geometric Approx. Biquadratic reference surface; normal edges

Displacement Approx. Biquadratic translations and rotations

Strain Approximation

_L : (_L, _L,_L} T)

= TLN "_N

Stress Approximation

_L = {nL,mL,qL} T

_(_,_), _(_,_), 7e(_,_)

_,(_,_), _,(_,_), 7,(_,_)

_e,(_,_),_,(_, _) ~

~ pl(_)p2(_)

~ v2(_)vl(_)

pl(_)p_(_)

Using constitutive relations, e.g.,

_L(_,7}) : CL(_,_)_L(_,_7)

_T
Force Vectors fi_ 9

e = Eg:I WgJ(_g'r}g)BL(_g'7}g)O'L(_g'_g)

T _ezl

f-:=_ = Eg=z9 wg J(_g,_lg)ND(_g,Tlg)f (_g,Tlg)

Stiffness Matrices K_tl 9 --T= _=_ _gJ(_,'7_)BL(_,'I_)_L(_,'7_)gL(_,'7_)
_--=-iT

Kge°m : E_:z9 w_ J(_9,_?g)GL (_g,_9)SL(_g,?Ig)-G4L(_g,_}g)

: ND(_,_g)Mass Matrices Me_ '_-_'_:=z w_j(_,_l_ ) ND(_#, _}_)2-T T

M D = diag{(_zI3,_zI3),...,(_gI3,_ZgI3)}

Nonlinearity !Midpoint strain and/or corotation

Pathologies Sensitive to distortion and mid-node placement

Recommended Use General-Purpose Applications

17
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2. ELEMENT FORMULATION

2.1 Summary

All shell elements within processor ES1 are based on a Mindlin/Reissner-like ((3 0 continu-

ous) degenerated-solid shell formulation, with pre-integration through the thickness used

for computational emciency, and to obtain a convenient stress resultant oriented format

(see reference 2 for details of pre-integration theory).

These elements fall into two classes: assumed displacement selective/reduced integrated

(SRI) elements, and assumed natural-coordinate strain (ANS) elements. The SRI elements

start with standard isoparametric assumed displacement fields, but use (effectively) special

integration rules to avoid locking and minimize rank deficiencies. The ANS elements are

more like hybrid elements, as they start with independent assumed displacement and

assumed strain fields. They also employ covariant tensor components for the assumed

strain approximations in order to reduce mesh distortion sensitivity. Moreover, the ANS

elements avoid both locking and rank deficiency while using full numerical integration.

Finally, all ESX elements use an updated Lagrangian approach for geometric nonlinearity

- superimposed about the generic corotational facility available within all ES processors.

This combination allows for accurate computation of arbitrarily large rotations, although

strains are required to be small (see Section 2.13 for details on element nonlinearity).

2.2 Variational Basis

Both SRI and ANS shell elements can be derived by starting with the principal of minimum

total potential energy, wherein the displacements are the only independently approximated

field, and then employing the variational "trick" of either selective-reduced numerical inte-

gration, or other modifications to the strain-displacement interpolation matrix to improve

element performance. Alternatively, these elements may be viewed as assumed displace-

ment/strain (2-field) hybrid elements, wherein the strain-displacement approximation is

made explicit. For simplicity, the former description will be used.

2.2.1 Continuum Equations

The principle of minimum total potential energy states that

6IIT(u) = 0

where, for linear elastic analysis, IIT is the total potential energy functional:

1

IIT(U) : 2/V IS(u)TC _(U)dE - ( /v uTfbdVTt- fs uT _" dS)

(1)

(2)

18



in which u = u(x) is the displacementvector, x is the position vector, C = C(x) is the

constitutive matrix, and the strain operator, e(u), is defined for linear analysis by:

1(Vu + (Vu)T) (3)= 5

In matrix/vector notation, we define the Cartesian components of the strain "vector" to
be:

Ouz

Ou

e2_ Ou Ou
2e12 _zz + _zl

e = 2e31 ' = Ou Ou (4)

2c3_ _z1+_z3
Ou Ou

where ui and _i are Cartesian components of the displacement and position vectors, re-

spectively.

2.2.2 Shell Assumptions

The geometry of a "shell" is illustrated in Figure 1. The following assumptions are intro-

duced into the continuum variational equations to obtain corresponding shell variational

equations - and hence reduce the above volume integrals to surface integrals:

1) Shell normals remain straight - and inextensible.

2) The shell normal stress can be neglected.

3) Transverse-shear strains remain small.

4) Thickness variations are gradual.

19
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Figure 1. Shell Geometry Used in Formulation of ES1 Elements
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With these assumptions, the position and displacement vectors may be partitioned into

reference-surface and "normal" components, i.e.,

x(_,_,z) = _(_,_) + z_(_,_)
u(_,_,z) = u(_,_) + za(_,¢)

(5)

where _, 7/are shell reference surface coordinates, z is the normal coordinate, _ defines the

position of a point on the reference surface, _ is the unit normal vector at that point, _ is

the reference-surface (translational) displacement vector, and _ is the relative (rotational)
displacement of the unit normal vector.

Substituting equation (5) into equation (2) yields the shell total potential energy functional:

1 IS _L(_I)T (]L_L(_I)dS- (J_s _IT _b+-fs)dS+ fL _T_t dL)_r(_) = (6)

where the superposed tildes represent shell resultant quantities, defined as follows:

_ = {_} = shell displacement vectoru (7a)

eL = Ze'L = reduced strain vector (7b)

(]L = fz ZT CL Z dz = resultant constitutive matrix (7c)

_L = f. Z T _L dz = stress resultant vector (7d)

--b / _T •f = fbdz = shell body-force vector (Te)
J_

"f" = ZT(zo) f'(z0) = shell surface-force vector (7f)

f = _T f° dz = shell line-force vector (Tg)

in which

0]0 12 and Z(z) = [13 zI3] (8)

and the L superscript denotes a shell-oriented local Cartesian basis defined at each point

in the shell reference surface as shown in Figure 1. Note that the hats above _L, _L, and

CL denote enforcement of shell assumption 2 (zero normal stress), which states that

= = 0 (9)
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J
f

so that the dimension of these arrays has been reduced from 6 to 5, as follows:

and

The normal strain is then always recoverable using

(10)

(11)

L

j=, c_o (12)

The shell resultant strain measures, _L, are defined in terms of displacements expressed in

the local-Cartesian basis as follows:

{membranes r ins}E'L = _L = bending strains (13)

7L transverse-shear strains

_L

t¢L =

where

{'}-: _YZ,

£ZLyL

I ?_zL }

_YL

_ZLyL

(14)

OZL

_+_
oy L OZL

OXL

= OZL

_+_
OYL

(15)

{7_L } (16)"fL = 7YL

This corresponds to a local application of Mindlin/Reissner plate theory at each point in the

shell. (Note: Some additional higher-order terms associated with the shell curvature have

been omitted from the bending strain-displacement relations. An option which includes

these terms may be found in processor ES7 (reference 4).)

Finally, equation (7d) leads to the following definition of stress resultants:

{HL} {membr nestressresu,tan s  orceJ'en th )_L -- mL = bending stress resultants (moment/length) (17)

qL transverse-shear stress resultants (force/length)

22



where the membrane resultants are defined as

nL = n_L = _yL dz

nxL YL O'zL YL

the bending resultants are defined as

(18)

mL = tour = tr_i" z dz (19)

m_ YL trzL YL

and the transverse.shear resultants are defined as

qL = qyz trzL YL

2.3 Discrete Equations

The finite element shell equations are obtained from equation (6) by introducing intra-

element approximations for the geometry and displacement field of the form:

_(_,r/) = Na(_,r/)_" (21a)

_(_,y) = ND(_,rl)d * (21b)

where

i }X2
._e = °

XNEN

d2
de = •

dNEN

; d. = 0,_

(22)

are the expanded element nodal coordinate and nodal displacement vectors, respectively,

and NG and ND are corresponding element interpolation matrices. Note that in the above

equations, engineering rotations, Oa, appear instead of the relative displacement vectors,

ua, introduced in equation (5). The engineering rotations are used as primary variables

for compatibility with other element types (for example, beam elements) within a general-

purpose code, as well as for user convenience. (The relationship between 0a and _a is

given later, explicitly, in equation (45).)

With the above discrete approximations (defined in detail in Sections 2.5-6), an assumed

displacement form of the shell strain vector becomes:

_'L(_,r/) = _'L(ND(_,r/)d')
(23)k /

= BL(_, r/) d e

23



where BL is the element strain-displacement matriz resulting from substituting equation

(5) into equations (14)-(16). However, a modified version of the BL matrix, which em-

bodies either selective/reduced numerical integration (SRI) or assumed natural-coordinate

strain (ANS) element formulations, is then employed to improve element performance (see

Sections 2.7-8). Symbolically, the replacement procedure may be represented as follows:

[BL _-- BL I (24)

The discrete form of the variational functional (eq. (6)) thus becomes:

Nel

aT = (25)

where the script e denotes an individual element, Nel is the total number of elements, and

the element total potential energy may be expressed as:

l d T Kmatt T ezt-d_f_II_, = 2 _ ¢ d_ (26)

In equation (26) K7 atz is the element material (or linear) stiffness matrix, and f__t is the

element external force vector, defined as follows:

- .o N.f ds+f NS 'eL)
f_°" f:'" f_'""

where TGC is the block-diagonal transformation matrix relating the computational basis

at each element node to the global Cartesian basis. Specific equation systems emanating

from equation (26), and their generalizations, are described in the following sections.

2.3.1 Linear Static Equations

The discrete equations for linear statics are obtained by setting the first variation of equa-

tion (25) to zero, i.e.,

K matld = fczt (28)

where K m"a and f_t are the assembled versions of the element material stiffness and

external force vector (eq. (27)); and d is the system displacement vector, which contains

the union of all nodal displacement vectors.
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2.3.2 Linear Dynamic Equations

For linear dynamics, an inertial term is added to the left hand side of equation (28) - using

Hamilton's principle- resulting in:

M_I + Km_ad = f_t (29)

where M is the structure mass matrix, assembled from the element mass matrices, Me,
which are defined in Section 2.12.

2.3.3 Linear Eigenproblems

For linear vibration analysis, the right-hand-side of equation (29) becomes zero and we

have the eigenproblem:

(Kraft' + AM) d_, = 0 (30)

where the eigenvalue, A, is the natural frequency squared, and dx is the corresponding
vibration mode.

For linear stability, or buckling analysis, M is replaced with the geometric stiffness matrix,

i.e.,

(K"_'t' + ,XK_'°m) dx = 0 (31)

where the eigenvalue, )_, is the buckling pre-stress load multiplier, d_ is the corresponding

buckling mode, and K ge°'n is the geometric stiffness matrix, defined in Section 2.11.

2.3.4 Nonlinear Problems

See Section 2.13 for a description of ES1 element contributions to nonlinear equation

systems.

2.4 Element Topology

The topology of ES1 shell elements is shown in Figure 2. There are 4- and 9-node versions

of this element, each with various forms of the B matrix described above. Note that both

external (user) and internal (developer) element node numbering conventions are shown in

Figure 2. The internal node numbers will be used exclusively in the remainder of Section

2.

Each node possesses the 6 displacement (3 translational and 3 rotational) degrees of free-
dom:

d,_ = O_
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where:

_,_= uS and Oa = 02 (33)

Components 1,2,3 refer to whatever orthogonal coordinate system, {z, y, z}, is active at a

particular node (we refer to this as the computational system). While each element node

potentially has 6 degrees of freedom in a generally oriented system, there are actually only

5 degrees of freedom in a system where one axis is aligned with the element surface normal

direction. This is because the "drilling" stiffness associated with the rotation about the

normal is zero. Hence, any rotational freedom too closely aligned with the element normal

direction should be suppressed. More precisely:

a ( ^c) < Otot (34)Set: Oi = 0 if cos -1 Xa " eia _

AC
where ei, , is the unit vector pointing in the i th computational direction at node a, and i,,

is the element unit normal vector at node a. The angle Otoz should be on the order of one

degree.*

Regarding constitutive data, each element stores the 8 resultant stress and/or strain com-

ponents defined in equations (13)-(20) at each of the 2 × 2 (for 4-node elements) or 3 × 3

(for 9-node elements) integration points illustrated in Figure 2. (Note: Selective/reduced

integration (SRI) does not modify the number of integration, or stress/strain storage,

points - as explained in Section 2.7.)

* Note: OtoZ= 1 ° is the default setting when using the automatic-freedom-suppression option

in conjunction with CSM Testbed element processor ES1.
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Figure 2. Topology of ES1 Shell Elements
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2.5 Geometric Approximations

The element geometry, shown in Figure 2, is approximated within the element by interpo-

lating from corresponding nodal quantities, as indicated in equation (21a). In particular,

the reference surface coordinates, _(_, 7/), are obtained using bilinear (for 4-node elements)

or biquadratic (for 9-node elements) Lagrange interpolation of the nodal coordinate vec-

tors, i.e.,
NEN

_(_,r/) = Z N,(_,7/)_a (35)
a=l

in which N_(_, r/) is the Lagrange interpolating polynomial associated with element node

a (see Tables 3 and 4 for a summary of these shape functions).

The above expression may be recast in matrix notation as:

- _(_,_) = No(_,_)x _
where

Na(_,r/) = [N,(_,r/)I3 N2(_,_/)I3 ... NNEN(_, rl)Is]

(36)

The shell unit normal vectors, "_(_, 7/), are obtained in a somewhat different manner, consis-

tent with shell assumption 3 in Section 2.2.2. By the assumption that the transverse-shear

strains remain small, the shell normal may be approximated as normal to the element

reference surface. This facilitates pre-integration through the thickness, and leads to the

following expression:
0_

°_ x _-_-
_(_,_) = _ - -_ (_,_)

lit × _11
where the derivatives are obtained by differentiation of equation (36).

(37)

Note that the above geometric approximations are much more accurate for 9-node (bi-

quadratic) elements, than for 4-node (bilinear) elements - which may be viewed as "flat"

plate elements when the four corner nodes are coplanar.

Finally, the local Cartesian (L) coordinate basis (_, _y_, $_ ) at each point (_, 7/) within

the element is constructed as follows:

^ "_ (3s)ezL --

a_ × a_ (39)

eyL = _zL x _L (40)

where a_ and a. are the natural-coordinate basis vectors, tangent to the _ and 7/coordinate

lines, respectively, and are computed using

NEN

0_(_,71) ON,

"_°(_'_) - o_ - _ o_ (_'_)_° (4_)
a=l
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where _a = {_,7/} for a = {1,2}. The transformation matrix that changes the basis of a

vector from global Cartesian to local Cartesian components is then given by:

Tga = [e_L e_L ¢*L] T (42)

Note that the element normal vector, _(_, r/), and the local Cartesian basis vector _zr (_, r/)

are coincident according to shell assumption 3 (Section 2.2.2), and comparison of equations

(37) and (39).

Table 3. Basic IsoP Data for 4-Node Elements

Isoparametric (Lagrange) Shape Fhnctions

Node(a) G '7o

1 -1 -1

2 +1 -1

3 -1 +1

4 +1 +1

Gauss

Integ. Pt. (g)

1

2

3

4

N,,(_, r/)

¼(1- e)O -,7)

¼(1+ _)(1- rl)

}(1- {)(1+ r/)

¼(1+ _)(1+ '7)

No,d{,,7)

-¼(1-_)

+¼0-_)

-I(1 + r/)

+I(1 + ,7)

Yo,,(_,_)

-I(: -_)

-I(1 + _)

+I(1 -{)

+I(1 + {)

Integration Coords./Weights

_g

-1/_

+l/v_

-l/V1

+l/v/3

_g

-_1_

- l l vi_

+11V5

+11_

Wg
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Table 4. Basic IsoP Data for 9-Node Elements

Node (a) _a

1 -1

2 0

3 +1

4 -1

5 0

6 +1

7 -1

8 0

9 +1

Isoparametric (Lagrange) Shape Fhnctions

No(_,7)a

-1 ¼_(_- 1)7(7- 1)

-1 ½(1-_2)7(7- 1)

-1 ¼_(_ + 1)7(7- 1)

0 if( -1)(1-7 2 )

0 (1 - _2)(1 - 7 2)

0 ½{({ + 1)(1- 72 )

+1 ¼_(_- 1)7(7 + 1)

+1 ½(1 --_2)r}( 7 + 1)

+1 ¼_(_ + 1)7(7 + 1)

No,d_,7)

½(_- ,i)7(7 1)

-_7(7 - 1)

½(_ + ½)7(7- 1)

(_-½)(1-7 2)

-2_(1 -7 2)

1
(_ + :)(1 - 7 2)

½(s¢-' 1)_)7(7+

-{7(7 + 1)

1 1)½(_+ _)7(, +

No,,(_,7)

½_(_ - 1)(7 - ½)

(1 - _2)(7- ½)

½_(f + 1)(7-})

-_(_ - 1)

-27(I -_)

--_¢7(_¢ + 1)

½{(_¢ - 1)(7 + ½)

(1 - _2)(7 + ½)

_( + 1)(7 + _)

Gauss Integration Coords./Weights

Integ. Pt. (g) _g 7g wg

1

2

3

4

5

6

7

8

9

0

+,/-A

_vrA

o

+4-A

-,/-A

o

+v/-A

-,/-A

-v'-.-.-A

-4-A

0

0

0

+vrA

+vFA

+v_A

.308642

.493827

.308642

.493827

.790123

.493827

.308642

.493827

.308642

2.6 Displacement Approximations

The element displacement approximations, embodied in equation (21b), are essentially

isoparametric. That is, both the translational and rotational displacement components are

interpolated with the same shape functions as the reference surface coordinates (eq. (35)).
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Thus,
NEN

_(_,T/) = Z Na((,T/lff,, (43)
tt_-I

and
NEN

a(_,_) = _ No(_,_l_a (44)
a=l

However, instead of using ua (the relative displacement of the unit normal vector), as the

rotational freedom vector, it is more convenient for users to introduce engineering rotations,

0,,. The relationship between these two quantities is as follows (for small rotations):

_a = -_, × Oa = x_O_ (45)

where Xa is the skew-symmetric matrix corresponding to the unit normal vector, _a, i.e.,

0 -_3 _2

A A-z2 zl 0

(46)

The complete displacement approximation may be expressed as:

_(_,r/) = ND(_,y)d" (47)

where

fi(_,r/) = , d" = d_. , d: = =

_(_,_) o: {o_o_ o_}T
d_v_N

(48)

with the displacement interpolation matrix defined as

ND(_, _7) =
"N](_,,)I 0 I "'" [ NNEN(_,,)I

o I I o
0

NNEN(_, 7])_NEN

(49)

Note that while the above expressions lead to bilinear displacement variation for 4-node

elements and a biquadratic displacement variation for 9-node elements, these variations do

not strictly correspond to the element strain field. Due to the SRI and ANS modifications

of the strain-displacement matrix, B _-- B, described in the next section, the effective

variation of translations within the element is generally of higher order than that implied

by equation (47).
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2.7 Strain Approximations (SRI)

For the SRI (selective-reduced integrated) shell elements, the strains - in the local Carte-

sian (L) bases - are approximated by first differentiating the isoparametric displacement

approximation (eq. (47)) at selected reduced integration points (different for each strain

component), and then taking linear combinations of the result to obtain a general expres-

sion for strain at normal integration points. The first stage leads to the standard BL

matrix (eq. (23)), and the second leads to its modified form: the BL matrix (eq. (24)).

To obtain the BL matrix, the displacements (eq. (47)) are first transformed to the L basis,

{.e.,

aL(_,?]) = rrLG(_,_)U(_,_) (50)

= TLG(_,_I) ND(_,_?)d e

where TLG is an expanded form of the o rthogonal transformation matrix defined in equa-

tion (42), and then differentiated - with TLG held fixed - using the definitions in equations

(14)-(16), i.e.,

_L = t_L = BL d e (51)

7L

which yields the following result:

BL(_,r/) = [BL({,_/) BL(_,7/) ... BLEN(_,7/)] (52)

with nodal submatrices

= [
J

where the membrane strain interpolation submatrix associated with node a is

(53)

_zL

_YL

_ZLyL

Ha Oa

ON"(_'rl)_Tt, 0
OXL

i o
OyL

C_;_L, T1)^T ONa(',rl)_T 0eYL + OyL zz,

(54)
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the bending strain interpolation submatrix associated with node a is

B_(_,_) --

_ZL

toy L

Iez L yL

-Ua Oa

(
0 ON.(_,TI)._T .._

02 L zL A'a

o 0Na(_,_)^r
OyL eyL Xa

.OY_((, T ONa(_'T]) eT )X.at OzL_)_y_ + OyL _0

(55)

and the transverse.shear strain interpolation submatrix associated with node a is

( ONo(_,_) ^r )
B_((,7/) = 7_ OzL _((,71) T e_x_

7yL OyL ey L Xa

(56)

The shape function derivatives with respect to the local-Cartesian (L) coordinates are

computed in terms of the corresponding natural-coordinate derivatives as follows:

OXL

ONa((,rl)
OyL

Or,

JL

_ ]-T { ONa(('_) }ONa(_,O(

., ar/

(57)

where JL is the reference surface Jacobian matrix, and its components are obtained using

L]•.. XNE N

]o,ONNE'N((,7) ONNEN((,rl)

o_ o7

(58)

Finally, the BL matrix is constructed as follows for SRI elements. For any strain com-

ponent, e, that is to be selectively under-integrated, the corresponding B eL row-matrix is

replaced by B_, where:

_(_,_) :
NRIP

r=l

(59)
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in which NRIP is the number of reduced integration points, _r,_ are the natural coor-

dinates at reduced integration point r, and the N,.'s are shape functions that extrapolate

from the reduced integration points (_,., 7,-) to the normal integration points (_, r/). Specific

values of these parameters for 4- and 9-node SRI elements are given in Table 5.

Table 5. Special SRI Element Interpolation Data

Parameter 4-Node SRI Elements 0-Node SRI Elements

(NRIP= 1) (NRIP =4)

Reduced Integration (Barlow) Sampling Point Coorcls.

L,_4

O, 0 -11vI3, - l l v13

+11v'-5,-11,/5

-11_, +11_/-_

+live, +llv_

Reduced--_Fu11 Integration Point Extrapolation Functions

g2(_,,)

g3(_,,)

g4(_,,)

1 ¼(1 - x/3_)(1 - v/3r/)

!(1 + V/-3_)(1 - v_r/)4

¼(1 - v/3{)(1 + v_r/)

¼(1 + V_)(1 + V_r/)

As a result of the above approximations, the individual SRI shell element strain components

vary as shown in Table 6 (for 4-node elements) and Table 7 (for 9-node elements).
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Table 6. Strain Variation within 4-Node SRI Elements

Strain

Component

Memb. e_ L

_zLyr.

Bend. _zL

/_yr.

_XLFL

TVS 7_L

7yz,

Element Type

EX42,46

F: P0 (_)P, (_)

EX43,45

F: Po(_)Pl (_)

EX44

F: po(_)pl (r/)

R: po(_,r/) F: pl(_)P0(_/) F: pl(_)p0(r/) F: pl(_)p0(r/)

F: p,(_)pl(_)R: po(_,7)

R: p0(_,O)

R: Vo(¢,O)

R: po(_, r/)

R: po(_,n)

F: p0(_)p_(_)

F: p_(_)p_(_)

rt: po(¢._)

R: p0(_,_)

a: p0(e._)

R: p0(_,_)

F: p0ff)p_(O)

F: pl(¢)po(_)

F: p_(_)pl(_)

R': p0(_)pl(r/)

a': p,(¢)po(_)R: p0ff,_)

F: po (_)pl (r/)

F: pl(_)po(r/)

F $ pl(_)pl(T_)

R: p0ff._)

R: po(_,_)

Table 7. Strain Variation within 9-Node SRI Elements

Strain

Component

Memb. L:t,

-_Z L yL

Bend. _L

I_yL

_ZLFL

TVS 7=L

7y_

Element Type

EX91 EX92

Pf(()Pf01)

EX96

F: pH(_)pH(r/)

Pf(_)P_S(r/)

R: R:

R: pl(_)pl(?_) R." pSl(_)pSl(_) I_: pH(_)plH(_ ) F: pH(_)pH07 )

R: R:

Pf(_)Pf07)

pS(_)pS(D)

R: R:

R:

R: p_(_)p_(rl)

R: pH(_)pH(r/)

R: pf(¢)pf(,)

In the above tables, pi(_) denotes a polynomial of degree i in the coordinate _, F indicates

that the variation corresponds to full (normal) numerical integration, and R indicates
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that the variation corresponds to reduced integration. Also, R' refers to directionally

reduced integration, in which reduced-quadrature sampling points are used in one direction,

while normal sampling points are used in the other - as indicated by the polynomial (p)
variations.

Finally, the polynomial superscripts $ and H in Table 7 (9-node SRI elements) denote

Serendipity and Heterosis shape functions, respectively, rather than the standard Lagrange

polynomials given in Tables 3 and 4. The Serendipity shape functions are given in Table 8,

and correspond to an 8-node element, i.e., a 9-node element with the center (bubble func-

tion) node removed. The Heterosis shape functions are a combination of Lagrange poly-

nomials for rotational nodal freedoms and Serendipity polynomials for translational nodal

freedoms. Thus, the center-node translations may be suppressed for Heterosis elements.

(Appropriate center-node freedom suppressions for Serendipity and Heterosis elements are

performed automatically if the ES procedure is called with the DEFINE FREEDOMS

option.) For implementational details on the Heterosis element, see reference 2.

Table 8. Serendipity (8-Node) Element Shape Functions

No& (a)
i

1 -1 -1

2 0 -1

3 +1 -1

4 -1 0

5 0 0

6 +1 0

7 -1 +1

8 0 +1

9 0 +1

g2(¢,,)

¼(1- _¢)(1- r/)(-_ - r]- 1)

½(1- _2)(1- r/)

¼(1 + _)(1 - r/)(_ - 77- 1)

½(1-_)(1-r/a)

½(1 + _¢)(1 - r/a)

¼(1 - {)(1 + r/)(--_ + 7/- 1)

}(1 - d)(1 + ,)

}(1 + _)(1 + r/)(_ + r/- 1)

2.8 Strain Approximations (ANS)

For the ANS (assumed natural-coordinate strain) shell elements, the strains are first ap-

proximated in the natural-coordinate basis - with special interpolation functions that pre-
vent locking and spurious modes - and then transformed to the local Cartesian basis.

Before presenting the effective strain-displacement matrix, BL, some useful notation and

geometric parameters specifically required by the ANS formulation will be introduced, fol-

lowed by a description of the individual membrane, bending and transverse-shear strain

component approximations. Note that these strain fields will be expressed ezplicitly in
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terms of the element's nodal displacements, in contrast to typical hybrid elements.

The construction of the natural-coordinate strain fields for 4-node and 9-node ANS shell

elements relies on a set of natural-coordinate reference lines for each element, which are

depicted in Figure 3. There are two _ and two 7/ reference lines for the 4-node element

(at coordinate values +1), and three _ and three 7/reference lines for the 9-node element

(at coordinate values -1,0,+1). It will be convenient to use an ij indexing scheme for

element nodes, which is defined as follows:

= (60)

where

or conversely,

a=nl ,(j - 1)+i (61)

j_ (a-1)+l, and i=a-nl(j-1) (62)
nl

in which nl is the number of nodes along each element direction (2 for 4-node elements, 3

for 9-node elements), a is the standard (internal) node number, and i and j are the indices

of the 77= const, and _ = const, reference lines, respectively.

One dimensional counterparts to the two-dimensional shape functions given in Tables 3

and 4 will also appear in the definition of the B matrix. These one-dimensional shape

functions, Ni(_) (or equivalently, Nj(_)), are defined in Table 9 for 4- and 9-node ANS
elements.
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Figure 3. ANS Shell Element Strain Sampling Points
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The definition of natural-coordinate basis vectors, _, and an, is also intrinsic to the ANS

formulation. These are defined as unit vectors tangential to the _ and _7curves, respectively,

and may be expressed as follows:

a71

IIo /O,fll a¢
 la,7  la,7

II /a,fll a,,

(63)

where Ae and A n are the corresponding length scale factors. A useful approximation for

these scale factors, which appears repeatedly in what follows, is the average value along

the pertinent reference line. Thus:

A_(_,71j ) _ A} = = sA (64)
2

and

_ si (65)
2

where ss and si are the lengths of the rI = r/j and _ = _i reference lines, respectively.

The vector transformation matrix from the global (Cartesian) coordinate basis to the
natural coordinate basis is then defined as follows:

and the transformation from natural to global coordinate bases is just the inverse matrix

(not the transpose, since TNa is not an orthogonal matrix), i.e.,

-1
TGN = TNG

Finally, the transformation from the natural coordinate basis to the local Cartesian coor-

dinate basis (see Section 2.5) - which varies from point to point within the element - is

obtained by compounding the above transformation with the transformation relating the

local and global Cartesian bases, i.e.,

T.LN = TLG TGN

where TLG is defined in equation (42).
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Table 9. ANS Element Strain Interpolation Data

Parameter 4-Node ANS Element 9-Node ANS Element

(N1=2, NB:I) (N1=3, NB=2)
i i

Reference Line Coordinates

_2

_3

-1

+1

-1

0

.-I-1
, _,ii i

Reduced Integration (Badow) Point Coordinates

-(_ o -1/ _

_2 - +l/v_
i

1-D Extrapolation Functions

1-D

1 ½(1- v_¢)

- ½(i- _)
i r n i rr i alia,i

Isoparametrlc (Lagrange) Shape Functions

N1(_)

N2(_)

N3(O
i|i

1-D Modified Isoparametric Shape Functions

}{(_- 1)

(1 -{=)

½_¢({+ 1)

g,(_)

g3(_)

1

2

1
2

Curvature-Correction Coefficients

(_
2

3

1(_+_)

O=i

Oai

1
+½, +g

1
+½, +_-

+4 4, +_, -_

+_ 4 1, +_, +_

2 4 4
-g' +i' +_
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2.8.1 Membrane Strains for ANS Shell Elements

The natural-coordinate membrane strain tangent to the _ direction is defined in continuum

terms as:

This component is approximated by first sampling the isoparametric version at reduced

integration points along each of the 77 = constant reference lines (see Figure 3), then

extrapolating along each of those curves, and finally blending the r/ = constant approxi-

mations with the standard Lagrange polynomials in 7/to compute the strain at any interior

point. An additional modification is made to the isoparametrie strain expression in or-

der to improve the representation of the initial curvature effect (see ref. 3). The ANS

approximation of _ is thus:

N1

_¢(_'r/) = E Nj(r/) -_ (_,r/j) (67)

j=l

where the one-dimensional approximations (along _ reference curves r/= r/j) are:

NB

= °°'(L,r/j) (6s)
k=l

The extrapolation functions, pk(_), and "reduced-integration" sampling point coordinates,

_k, are given in Table 9, and the modified isoparametric approximations are given by:

N1 ONi
r/i) -, : --_- (_k) _j (69)

A_ i=1

In the above expression, the • superscript refers to the curvature modification mentioned

above. This curvature correction (*) is enforced by replacing the normal displacement

component at each node along a reference line with a linear combination of the normal

displacement components at all N1 of the nodes on that line. This leads to the definition:

_. _,(ij) :, (70)
Uij -_- " GN taij

where T(_ is the transformation matrix from natural-coordinate to global-Cartesian com-

ponents at element node i j, and fii*j are the curvature-corrected natural coordinate com-

ponents of the displacement at node ij, i.e.,

/V1

ui*J ---- E C_z fitJ (71)
l=l
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where

u_j vii wlj

c,'-,= v55 _,,o (72)
_i_ 0 0 C.

in which _iz is the Kronecker delta and the weighting coefficients, Cil, are given in Table

9. Note that only the normal displacement components are affected by equation (72), i.e.,

_*j = uij, v_ = v"qj, and wi_ = ENll C'i, _,j.

Finally, the natural-coordinate components of the nodal displacements must be trans-

formed back to a fixed Cartesian system ill order to extract the B matrix as defined in

equations (23)-(24). Thus, the compound expression for the curvature-corrected nodal

displacements in equation (70) becomes:

N1

_ T_ _c_ "-('_)'-'- (73)= (.tGN) uzj
1=1

Similarly, for the membrane strain tangent to the 7/coordinate line, a form-identical ap-

proxlmation is used, except with _ and 77reversed. Thus:

AT

z,(_,_) = a, Ou
A, 7 07/

N1
....¢

_ g,(_) z, (_,,_)
i=1

(74)

where
NB

7. (,,,,7) = _pWT)_."°"(_,,_) (75)
k=l

and

Note that a double asterisk (**) superscript is used for the curvature-corrected nodal

displacements, instead of a single asterisk as in the _ expression in equation (69). This

is because the nodal displacement averaging now involves a linear combination of normal

displacements on _ = const, reference lines rather than 7/= const, reference lines. Thus,

N1

= k"GN] Uil

/=1

(77)
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Finally, the membrane shear strain, g_T, is approximated in an analogous manner to g_

and e,1, except that special "reduced-integration" blending functions, N/(_) and Nj(r/),
are used to transfer the strains from the reference lines to any interior point. These special

shape functions, given in Table 9, assure that both terms appearing in the definition of the

shear strain (each involving a derivative with respect to one natural coordinate direction)

emulate the effect of uniformly reduced integration for the membrane shear. Thus,

AT AT
a_ 0-_ a T 0-_

_T(_,'7) - AT O_ + A_ O---g

N1

(_,,_)
i=l

N1

j=l

-"1_¢T (_,_)
T

(78)

where the _ = const, reference line approximations are

---, NB Iso**

k=l

(79)

with the modified isoparametric contributions

_(_,,_) _ OY_ ..
l'°°°(_i,_k) Ai

(80)

Similarly, the r/= const, reference line approximations are

_'_ (_,_j) = _(_) (s_)
T k=l

with the modified isoparametric contributions

AT--_,o. _ aT (_,,_) ON, - .
e'_'_ T (t_,r/._) - A_ ,=1

(82)

where the curvature-corrected displacement vectors, _,j and _*, are defined in equations

(73) and (77), respectively.

2.8.2 Bending Strains for ANS Shell Elements

The bending strains are approximated in nearly identical fashion to the membrane strains,

except that i) nodal rotations (0_i) instead of nodal translations (_,_) are involved, and
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ii) the initial-curvature correction is omitted. This leads to the following expressions for

the _ bending strain

where

and

N1

j=l

NB

E,_¢(¢,,?j) =
k----1

A_ z_.,=l-g_-(_) X,_0,_

in which flit has been replaced by Xij Oij, with Xij as defined in equation (46).

Similarly, the r/bending strain is approximated as

(83)

(84)

(85)

,_,ff, r/) -
^T 0fia n

A n Or/

N1

,=1

(86)

where

and

NB

-;" (¢" r/) Z 'd'° -= p,(r/) , ff,,r/_) (87)
k=l

#.o,- = , a, (_,,_k) Olv_
(_i,qk) - i

A. .i=1
(88)

Finally, the _r/bending strain (or twist) is approximated in a similar manner to the mem-

brane shear strain in equation (78), i.e.,

AT

,_,(_,r/) _ _[ _ + __a,a-a
A, 7 Or/ A_ 0_

N1 NI

i=1 j=l

(89)
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where the _ = coast, reference line approximations are

k=l

with the isoparametric contributions

zs°(_i,_k ) _ "a_((i,qk) _ __(_k)xijOi j
t¢_'1 _ A in j= l

and the 77= const, reference line approximations are

NB

--_ I Iso --

k=l

with the isoparametric contributions

--:A_ i=I -_(_k) xiJOiJ

(90)

(91)

(92)

(93)

2.8.3 Transverse-Shear Strains for ANS Shell Elements

The transverse-shear strains are computed by using the modified shape functions, Ni(()

and Nj(r/), to interpolate rotations along each of the element reference lines, and then using

the standard shape functions, Ni(_) and Nj(_), to blend the reference line approximations

into the interior. This ensures that the differentiated displacement term appearing in

the definition of the transverse-shear strains (eq. (16)) is approximated by the same

order polynomial as the undifferentiated term. Additionally, an initial-curvature correction

analogous to that used for the membrane strains (eqs. (74),(78)) is introduced. However,

instead of modifying the normal displacement component (_ = uz), it is the tangential

displacement components (_ = u¢ and _" = u,) that are relevant in this case.

The approximation for the _-directed transverse-shear strain, 7_, is as follows

_T 0-a

_(_'") = _ o¢ + a_'(_'_)a
N1

_ yj(.) _ (¢,_)
j----1

(94)

where

7_ (_,?s) = "Y__(_,'_s)+ "_ z(_,'_s) (95)
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The term involving derivatives of the translations, _, is approximated by

I80 _

_7"(_,,7_)_ ON, ,
A_ i=1

(96)

where
N1

(lj) -1 --
u:J = T_J)N Z C'_(TGN) utj

/=1

(97)

and Ci"_ is the curvature correction coefficient matrix for transverse-shear strains, defined

by

utj vii wzj

o o)e,, o
(98)

in which the coefficients O. are given in Table 9.

The part of 7_ involving the undifferentiated rotation parameters, _, is approximated by

N1

= _[(_,,Tj) Z -_,(,)x,jo,j
/=1

(99)

where the modified shape functions, N'i(_), are defined in Table 9, and explained in refer-

ence 3.

The approximation for the r/-directed transverse-shear strain, 7,7, is obtained by simply

interchanging _ and 77, and i and j, in the expression for 7¢. This gives

"y,(_,,7)
ST 0-d AT

- A, 0,7 + a, (_,rt)

N1

j----1

(100)

where

(_ ) (_"_) + _" z _'_)7,1 ,,r/ = 7,7 __ (lOl)
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The translational term employs the 1-D isoparametric shape functions (Ni) with curvature-
ft

corrected tangential nodal displacements (_ij):

where

180 II

_r(_,_) _ ONj ,,: --_-(_)%
A/, j=l

(102)

N1

u_ = T(G_ E CJ_ (T(_)-l_a (103)
l----1

and the rotational term employs the modified 1-D isoparametric shape functions (Ni) with
uncorrected nodal rotations:

gg

_1 (104)
^T

j=l

2.8.4 ANS Strain-Displacement Matrix (BL)

The final strain-displacement matrix, BL, for the ANS elements is defined by collecting

Thus, with BLthe above approximations into the format given by equations (23)-(24).

partitioned as

BL-'-[_-L ------L _LB2 ... BNEN ] (105)

r ]:

where

(100)

the membrane partition is defined as follows

[_"-L = T_LN_N } (107)

where TLN is the strain transformation from natural-coordinate to local-Cartesian com-

ponents, defined as:

T_N =

t_l t_2 tllt12

t_l t_2 t21t22

2tnt2_ 2t12t22 tllt_2+t_2t2_

(108)
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where the t,,_(a,fl = 1 : 2) are the components of the vector transformation from natural

to local-Cartesian, i.e.,

ta2] = [(_'e-L)(a_ "_v_)] -1 (109)

u

The matrix, _-_u, which interpolates natural-coordinate strain components from global

Cartesian nodal displacement components, is defined from equations (66)-(82), as follows:

e_

e_,7

A_ (a)

N,(o>ff)
A_('0

Ni(#(_)

A_(a)

Ua Oa

NO Na OUt- ^T- T_)
E pk(_) E --_-(_k)a_ (_k'r/J(a)) C_(a)l (T_N) -1 0
k=l 1=1

NB N1

ONl .- \AT.. _ .,,-_i(a)l a --1

k=l 1=1

NB N1 ON 1 _T _ qpi(a)l ¢ (TGN) 0

k=l 1=1

;_(a_ NB N10Nt - ^T- ,.ptj(a) T a -1

A_ k=a 1=1

--L

Similarly, the bending partition of the B. matrix is defined as

(110)

[BYZ = T_,NBY _ ] (111)

where ny" emanates from equations (83)-(93) and is given by

n_n

m

Ha

(o

0

0

NB ONe(.) _ ^T - '_

A_ _=1

A_(.) E p_(r/) (V_) aT(_i(.),_) X.
k=l

)
k=l

N_(.)(r/) NB i)Ni(a)- ^T-

k----1 _)

(112)
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--L
Finally, the transverse.shear partition of the B,, matrix is defined as

where TLN is the 2 × 2 vector transformation from natural-coordinate to local-Cartesian

components (eq. (109)), and fi7 emanates from equations (94)-(104) and is given by

7_

"YT/

m

Ua

A_

_T(_,_ _r_tj¢-)C_ - -1'lj(a)) XGN i(a)l (TGN)

qpi(a)l C- f a --1

_[(_,,j(o))xo

N_(o)(_)Nj(_)(,7)•
^T

(114)

As a result of the above approximations, the individual shell strain components vary within

the element domain as shown in Table 10.

Table 10. Strain Variation within ANS Elements

Strain Element Type

Component EX47 EX97

Memb. _ po(¢) PI(W) pI(¢) P2(W)

7. plff) po(_) p_(_)pl(.)

E_, P0(_.') PI(_) Pl(V)

Bend. _ p0ff) p,(.) v_(_)p_(.)

_, p1(_)po(,) p_(_)p_(,)

_, PO(_,") Pl(_) Pl(")

TVS. 7_ voff) p,(,) _,(_) v_(,)

7, Pl(_) PO(') P2(_) Pl(')
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2.9 Stress Approximations

Since the shell elements within processor ES1 assume displacements and strains, stresses

are computed directly in terms of strains using the constitutive relations. For linear anal-

ysis, this amounts to

_L(_,_) = CL(_,_)'_L(_,_) (115)

where (_, 7/) represents an arbitrary element integration point.

2.10 Force Vectors

All element force vectors are constructed using full numerical integration to evaluate el-

ement integrals (even though the effect of selective reduced integration (SRI) may be

embedded in the integrand). The number of Gauss integration points (NIP), and the

Gauss coordinates (_g, 7/9) corresponding to "full" integration are listed in Table 3.

2.10.1 Internal Force Vector

The element internal force vector is defined as

feint IS --T
-- BL _L dS

NIP

E _J9 de, (JL(_g,,g))(BT(_g,,g)_L(_g,,g))

g:!

Note that for linear analysis, the above definition is equivalent to K_ atz de.

(116)

2.10.2 External Force Vector

feezt body fsurf fline= f, + + -e

where the element body force vector is defined as

f_o,_ = _ N_ _B dS

NIP

T _g))E Wg det (JL(_g,_Tg)) (UD(_g, --Bz/9)f (_g,

g----1

the element surface force vector is defined as

f;,--s s= dS

NIP

g=l

(117)

(118)

(119)
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and the element line .force vector is defined as

f_i,_, = fL NT?LdL

NIPI O_ a

g=l

(120)

where _a corresponds to either _ or % depending on which of the four element boundary

fines is being loaded.

2.11 Stiffness Matrices

The tangent stiffness matrix, defined as K = 0f/0d, is the sum of three contributions,

i.e.,

K = K m'a + K ge°m + K t°ad (121)

which are described in the following sections.

All element stiffness matrices are constructed using full numerical integration to evaluate

element integrals (even though the effect of selective reduced integration (SRI) may be

embedded in the integrand). The number of Gauss integration points (NIP), and the

Gauss coordinates (_g,_/g) corresponding to "full" integration are listed in Table 3.

2.11.1 Material Stiffness Matrix

The element material stiffness matrix is defined as

KT°" fs= BL CL BL dS

NIP

g=l

(122)

2.11.2 Geometric Stiffness Matrix

The element geometric stiffness matrix is defined as

- i_ 1"= SL G L dS

NIP 3

E (E
g=l i=l

(123)
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The matrices $L and G L are defined as:

S L
[nL] [mL] qL
[mL] 0 0

qLT 0 0

(124)

where

and

{q_:L } (126)qL = qyL

and G L is the displacement gradient interpolation matrix for displacement component, i,

defined by r O_ffL

= G-_L((, _/) d, (127)

The individual entries in G L are defined in a similar manner to the modified strain-

displacement matrix, BL. First, the basic isoparametric shape functions are used to com-

pute the matrix G_, by direct differentiation of _(_, q) in equation (47), i.e.,

G_ = [G_ a_ ... G_NI (12s)

where

G_"(_, _7) =

_/L,,L

_'LL

_L

u--_ 0,,

i1 _ ".r

¢JYL

0

0

o

0

ONa(_,77)_L_t
OyL i k%, _)T Xa

(129)
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where u L = {UzL,U_L,UzL}, for i = {1,2,3}.

Finally, G---_is constructed from GL using the SRI formula introduced in equation (59),

l.eo,
NRIP

= (130/
r=l

where NRIP, N---_, and (_,_) are as defined in Table 5. This produces the effect of

uniformly reduced integration on K _°m. Exceptions to this rule for SRI elements are in-

dicated in the formulas for K g_°m given in Tables 2a-2n, where elements that affect full

integration feature the matrix G_; those that affect uniform-reduced integration feature

the matrix GL; and those that affect selective-reduced integration (on membrane displace-
^i

ment gradients only) feature the matrix G L. Note that the ANS elements (EX47 and

EX97) feature G'--L (uniformly reduced integration), but compute it in a slightly different

manner than indicated above - by constructing a natural-coordinate version first, and then

transforming to local Cartesian components.

2.11.3 Load Stiffness Matrix

The load stiffness matrix, defined as K l°aa = cOf_t/Od, has not yet been implemented for

the elements within processor ES1.
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2.12 Mass Matrices

2.12.1 Consistent Mass Matrix

The element consistent mass matrix is defined as

M. = J(sN_2"NDdS

NIP

N T %))w, det (JL(,_a,'%))( D(_a,T/,12"(_g,T/glND(_,,
9-----1

where the integrated density matrix, I is defined as follows:

Z = P zI3 z213

(131)

(132)

2.12.2 Lumped (Diagonal) Mass Matrix

The element diagonal mass matrix is defined as

Me [M: ]u_
= . (133)

..

MNEN

M, = _. I3

where

in which _a is the translational mass coemcient at element node a, _ is the rotational

mass coefficient at node a, and I3 is a 3 × 3 identity matrix.

The translational nodal mass coefficient, rrt--'_,is defined as the diagonal component of the

corresponding consistent mass matrix, scaled so that the sum over all of the nodes equals

the total element mass. Thus,

m_

where

_ _ _ m_o_ ) (135)
ma -- a \ x"_NEN

Lb=l rIZb

= fsN_(_,,7)-_(_,,7)aS
N9

l

"_ __aWg det (JL(_g,_Tg)) N2a(_g,_Tg)-P(_g,Tlg)

9=1

(136)

r
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and

re,o, - n)as

Ng

g----I

(137)

in which _ is the mass density per unit reference surface area (fz P dz).

The rotational nodal mass coefficient, _ta, is a scaled version of the translational nodal

mass coefficient, _a. The scale factor is the maximum effective area moment of inertia -

either through the thickness, or over the element planform. Thus:

_ta = m, a_ (138)

where

_ = MAX(a_,A) (139)

in which eta is the mass-averaged through-thickness moment of inertia

OLO.

( fz p z2 dz),_

(_ pdz)_

(140)

and A is the mass-averaged element area moment of inertia, given by

A- mtot (141)
P_'Oe

where
NEN

a=l- (142)
p_,,e = NEN

The details and motivation for the above diagonal mass formulation - especially the rota-

tory inertias, _t_ - can be found in reference 5.
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2.13 Element Nonlinearity

For nonlinear problems, the discrete system of equations given in equation (29) generalizes

to (ignoring structural damping and higher-order inertial effects):

M d + fi'_t(d) = f*_t(d) (143)

where fint and fezt are now nonlinear vector operators. This equation system is then usu-

ally linearized, yielding the following linear equation system to be solved at each iteration

of a nonlinear analysis:

M6d + K_d = f_t(d)- fln_(d) (144)

where d is the displacement vector connecting the current (reference) configuration to the

initial configuration, _Sd is the iterative change in the displacement vector (to be computed),

and K is the tangent stiffness matrix at either the current configuration (for True-Newton

iteration) or some previous configuration (for Modified-Newton iteration).

The nonlinear ES1 element contributions to M, K, f_t and lint have the same form as

the linear contributions (eqs. (131)-(133), (121)-(123), (117)-(120) and (116), respectively),

with the following exceptions:

1) All element integrals are performed with respect to the current configuration instead

of the initial configuration. Thus, the nodal coordinates employed in all element

arrays are first updated using:

x--'. = Xa + _a (145)

where X, are the reference-surface coordinates at node a in the initial configuration,

and _a are the current reference-surface displacements (translations) at node a. For

example, the BL matrix appearing in K maa (eq. (122)) and fi,_t (eq. (116)) now

plays the role of an incremental strain displacement matrix, i.e.,

m

b"ffL = BL gd_ (146)

where BL has the same definition as given in either equations (52)-(54) for SRI

elements, or in equations (105)-(114) for ANS elements, except for the replacement:

BL(X) _ BL(X) (147)

2) BT

The stress resultant array, O'L, which appears explicitly in both fi,_t = fs BL _rL dS

and in K g_°m - fs 3- _i=1 _L SL(ffrL)-G'L dS, is computed using the midpoint
.-..mid

strain operator, e L For example, for materially linear analysis, equation (115)
becomes:

_L = CL--mideL (148)
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8)

4)

where

-mid _L(_ mia, el) (149)E L --

That is, the midpoint strain operator is identical to the linear strain operator, except

with the replacement
X +-- _mld (150)

where
U

7

The midpoint strains are computed at element integration points using

(151)

...mid,+ , (152)_L re, Y)= BL(_ia(_,_)) de

Note that the same strain-displacement matrix operator as in equations (23)-(24)

is used, except with the replacement

BL(X) +--- BL(_mid) (153)

For the interested reader, the midpoint strain tensor is defined in continuum terms

as

Emid 1 0u ( 0,1
2[ + (154/- Oxmia \ Ox mia ] J

and is for small strains and moderate rotations a close approximation of the La-

grange strain tensor, which is given by

in spite of the absence of explicit nonlinear terms in equation (154). (Note that

these two tensors are numerically close only if E'_{g is expressed in a basis that

moves with the midpoint configuration, and e Lag is expressed in the corresponding

initial basis.)

For very large rotations, the corotational facility built in to the generic element

processor shell (ES) may be used. In this case the bulk rigid body motion of each
element is first "subtracted" from the overall motion before computing Kc, f_nt,

and _L(_Lia). The main effect of this adjustment is to increase the accuracy of

_z. q,ac), since the midpoint configuration becomes closer to both the initial and

current configurations, after the element rigid body motion has been subtracted;

and the accuracy continues to increase as the shell element mesh is refined. In

fact, with the corotationai option on, it is even possible to solve nonlinear problems

without using any other element nonlinearity (albeit with a lower order of accuracy).

See reference 6 for details.

ee_t is a nonlinear function of the displacementThe element external force vector, ._ ,

vector, d_, only if live loads are present. For example, in the presence of live (hydro-

static) pressure loads, the nonlinear effect is introduced by simply using the current
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(updated) coordinates in the computation of equation (119). For displacement-

independent (dead) loads, the external force vector is usually expressible as:

fezt = )(_c_t (156)

,.-,,czt

where f is a fixed base load vector, and $ is the current load factor. In this case,

equation (119) is evaluated only once (initially), and scaled by ), as the analysis

progresses.
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